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Let f(x) be a continuous function on the interval [a, b] which has
m continuous derivatives, in symbol, f ¥ Cm[a, b] (C[a, b]=C0[a, b]), and
wk(f, t)[a, b] be the modulus of smoothness of order k of f ¥ C[a, b], as
usual. We will write w(f, t)=w(f, t)[a, b] for convenience if there is no
confusion.
It is well known that wm(f, t) [ tkwm−k(f (k), t) for m \ k if f ¥ Cm[a, b],

where w0(f, t)=||f||[a, b] :=maxa [ x [ b |f(x)|.
The inverse result of the above inequality does not hold in general.

However, for some functions f ¥ C[a, b], one has

tkwm−k(f (k), t) [ Cwm(f, t) (1)



for m \ k, where C > 0 is some constant independent of t for small t. This
kind of works began from a result of Yu and Zhou [5], and was inves-
tigated by Hu [2] and Hu and Yu [3]. As a whole, all these results indi-
cate that for splines with arbitrary (fixed) knots, the inequality (1) holds in
general Lp spaces for small t.
The present paper will investigate polynomials for which the inequality

(1) holds.
As we know (see Stechkin [4]), for trigonometric polynomials of degree

n (we denote all trigonometric polynomials of degree n by Tn), the following
inequality holds:

Theorem 1. Let f ¥ Tn, m \ 1, n \ 1. Then for any h ¥ [0, p/n] we have

||f (m)||[0, 2p] [ 1
n

2 sin nh
2m ||Dm2hf||[0, 2p],

where Dmh f(x) is the mth difference of f(x) with step h.

From Theorem 1, we can easily deduce the following

Theorem 1Œ. Let f ¥ Tn, m \ 1, n \ 1. Then for any 0 < t [ p/n and
k [ m we have

tkwm−k(f (k), t) [ C(m) wm(f, t),

where C(m) is a positive constant only depending upon m.

We are going to establish an analogue for algebraic polynomials. It is
clear that this as well as the following Theorem 2Œ is not a direct conse-
quence from Theorem 1 just by a simple variable change x=cos h since the
general differences or moduli of smoothness are related to.
Let Pn be the class of all algebraic polynomials of degree n.

Theorem 2. Let f ¥Pn+m, m \ 1, n \ 1. Then there is a constant
Mm > 0 only depending upon m such that for any h ¥ [0, Mmn−2] we have

hm ||f (m)||[−1, 1] [ C(m) ||Dmh f||[−1, 1−mh].

Let Tn(x)=cos(n arc cos x) be the Chebyshev polynomial of degree n,
and tk=cos(kp/n), k=0, 1, ..., n, its extremum points.

Lemma 3. Let f ¥Pn, f(x0)=||f||[−1, 1], x0 ¥ [tj0+1, tj0] for some j0 ¥
{0, 1, ..., n−1}. Then
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f(x) \ ˛
||f||[−1, 1] s1Tn(x),

x0=tj0 or x0=tj0+1, x ¥ [tj0+1, tj0],

||f||[−1, 1] s2T̄n(x),

otherwise and x0 \ 0, x ¥ [sj0+1, sj0],

||f||[−1, 1] s3T̃n(x),

otherwise and x0 < 0, x ¥ [s −j0+1, s
−

j0],

(2)

where s1=sgn Tn(tj0 ) for x0=tj0 , or s1=sgn Tn(tj0+1) for x0=tj0+1,

T̄n(x)=Tn(t), t=
1+tj0
1+x0

(x−x0)+tj0 , s2=sgn Tn(tj0 ),

sk=
1+x0
1+tj0

(tk−tj0 )+x0, k=0, 1, ..., n,

and

T̃n(x)=Tn(u), u=
1−tj0+1
1−x0

(x−x0)+tj0+1, s3=sgn Tn(tj0+1),

s −k=
1−x0

1−tj0+1
(tk−tj0+1)+x0, k=0, 1, ..., n.

Proof. We only need to prove Lemma 3 for n \ 2. When x0=
tj0+1=−1 or x0=tj0=1, the argument is similar, we only deal with the
second case x0=tj0=1. Set

kn(x)=f(x)− ||f||[−1, 1] Tn(x),

and assume (2) fails. Then there is an x1 ¥ (t1, 1) such that kn(x1) < 0. One
should note that kn(t1) \ 0 and kn(1)=0 under this situation, hence
x1 ] t1 and x1 ] 1. We see that (−1)k+1 sgn kn(tk) \ 0, k=1, 2, ..., n, and
kn(x1) < 0, so that kn(x) has n zeros between [−1, x1], and one more zero
at t0=1. This contradicts the fact that any polynomial of degree n has at
most n zeros.
When x0=tj0+1 or x0=tj0 but x0 ] ±1, the similar argument can be

applied to find n zeros of

kn(x)=f(x)− ||f||[−1, 1] s1Tn(x)
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in [−1, 1], and one more zero at x0 (the multiplicity is calculated) since x0
is a local extremum point of both f(x) and Tn(x) (thus k −n(x0)=0). This
also leads to a contradiction.
Now assume x0 ¥ (tj0+1, tj0 ), and without loss of generality, assume

x0 \ 0. Set

t=
1+tj0
1+x0

(x−x0)+tj0

for x ¥ [−1, 1], and

sk=
1+x0
1+tj0

(tk−tj0 )+x0, k=0, 1, ..., n.

By noting x0 < tj0 we have for k=0, 1, ..., n,

−1 [ sk <
1+x0
1+tj0

(1−tj0 )+x0 [ 1.

Let

T̄n(x)=Tn(t).

Then

T̄n(x0)=Tn(tj0 )=s2 ||Tn ||[−1, 1]

for s2=sgn Tn(tj0 ). Suppose the inequality (2) fails. One has a point
x1 ¥ [sj0+1, sj0] such that

f(x1) < ||f||[−1, 1] s2T̄n(x1), (3)

where, in particular, sj0=x0. One must note here that when x=sk, t=tk.
So

sgn T̄n(sk)=(−1)k. (4)

Write

fn(x)=f(x)−s2T̄n(x) ||f||[−1, 1]. (5)

One also must note that x1 ] sj0 and x1 ] sj0+1 since fn(sj0+1) \ 0 and
fn(sj0 )=fn(x0)=0 hold. We check that, due to (4) and (5),

(−1)k+1 s2 sgn fn(sk) \ 0, k=0, 1, ..., n,
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and in particular,

fn(x0)=fn(sj0 )=0, sgn fn(sj0+1) \ 0.

In case tj0=1, with the same argument as the proof of the case x0=tj0=1
(by using fn(x) instead of kn(x)) we can achieve the required result. Now
assume tj0 < 1, we see f −n(x0)=0 since x0 is a local extremum point of both
f(x) and T̄n(x) (this happens because tj0 cannot be 1, and cannot be −1
due to x \ 0 and n \ 2). Furthermore fn(x1) < 0 by (3). Therefore fn(x)
has n−j0−1 zeros in [sn, sj0+1], has j0−1 zeros in [sj0 −1, s0], and has
one zero in [sj0+1, x1]. Furthermore, we see that fn(x) has two zeros at x0
(the multiplicity is calculated). All together, fn(x) has n+1 zeros in
[sn, s0] … [−1, 1], that is impossible since fn(x) is a polynomial of degree
n. This contradiction proves the conclusion we require. L

Proof of Theorem 2. We first prove the case m=1. Assume fŒ(x0)=
||fŒ||[−1, 1], the other case fŒ(x0)=−||fŒ||[−1, 1] can be treated similarly.
Without loss of generality, with all the notations of Lemma 3, we also
assume x0 ¥ [tj0+1, tj0], x0 ] tj0 , x0 ] tj0+1, and x0 \ 0. For other cases
mentioned in Lemma 3, we have similar arguments. By Lemma 3, for all
x ¥ [sj0+1, sj0],

fŒ(x) \ ||fŒ||[−1, 1] sT̄n(x)

for s=sgn Tn(tj0 ). Note that t=((1+tj0 )/(1+x0))(x−x0)+tj0 , let y0=
x0=sj0 ,

y1=
1+x0
1+tj0
1cos (j0+2/3) p

n
−tj0 2+x0,

we see 0 < y1 < y0, and

T̄n(y0)=Tn(tj0 ), T̄n(y1)=Tn(cos((j0+2/3) p/n)).

For any 0 < h [ y0−y1,

|f(y0−h)−f(y0)|=:F
h

0
fŒ(y0−u) du :

\ ||fŒ||[−1, 1] F
h

0
|T̄n(y0−u)| du \ ||fŒ||[−1, 1]

h
2
,
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or for any 0 < h [ y0−y1,

||fŒ||[−1, 1] [
2
h
||f(x+t)−f(x)||[−1, 1−h]. (6)

It is not difficult to calculate that

y0−y1 \
1
2
1cos j0p

n
− cos

(j0+2/3) p
n
2 \Mn−2,

where M> 0 is an absolute constant. Thus for any 0 < h [Mn−2, (6) holds.
When m \ 1 and 0 < h [Mmn−2, we can reach that

||Dm+1h f(x)||[−1, 1−(m+1) h]=||Dmh (f(x+h)−f(x))||[−1, 1−(m+1) h]

\ C(m) hm ||f (m)(x+h)−f (m)(x)||[−1, 1−h]

\ C(m) hm+1 ||f (m+1)||[−1, 1]

by induction, where Mm > 0 is a constant only depending upon m. Up to
this stage, we have finished the proof. L

Remark. Ditzian et al. [1] give a similar inequality on algebraic poly-
nomials in terms of j(x)=`1−x2 :

hm ||jmP (m)n ||[−1, 1] [ C(m) ||DmhjPn ||[−1, 1]

holds for 0 [ h [ Cn−1. One can deduce Bernstein type inequality

|P (m)n (x)| [ C(m) nmj−m(x) ||Pn ||[−1, 1]

directly from their result. We note that a direct corollary from our present
result is Markov inequality (except for a constant). Those two inequalities
form complete inverse inequalities for the mth difference of an algebraic
polynomial and its mth derivative in uniform norm.

From Theorem 2, we can immediately deduce that

Theorem 2Œ. Let f ¥Pn+m, m \ 1, n \ 1. Then for any t ¥ [0, n−2] we
have

tkwm−k(f (k), t) [ C(m) wm(f, t).
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